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1. Introduction 
 

Software reliability is a quantitative measure of 
software quality.  It is defined as a probability of 
failure free execution given a specific environment 
and a fixed time interval. The goal of software 
reliability assessment is not just to estimate the 
failure probability of the program, θ, but to gain 
statistical confidence that θ is realistic. In practice, 
the required failure probability θ0 and the confidence 
level C are application specific and predefined.   
 

The input domain reliability assessment approach 
defines the reliability of a program as the probability 
of failure free operation for specific inputs [3]. 
Program P is seen as a function that maps all the 
elements of the multidimensional input space I into 
the output space O.  The inputs that activate faults in 
the program are mapped into failures, i.e., incorrect 
outputs.  

 
The traditional theory behind input domain models 

assumes that the certification testing process starts 
with "zero knowledge" about the system under test.  
In other words, all the observations collected during 
the development and verification and validation 
activities, such as inspections and reviews, module 
testing, formal analysis, engineering observations and 
judgments, etc., play no role in reliability 
certification.  Consequently, the most important 
drawback of the input domain models is an enormous 
amount of testing (statistically independent 
executions of test cases) needed to attain a modest 
confidence that moderate software reliability has 
been achieved.   

 
Process improvements and adherence to maturity 

models enable the production of software with 
repeatable quality [7, 9]. Ignoring process and 
product quality measurements collected throughout 

the development lifecycle in the software reliability 
certification phase is a mistake.   On the other hand, 
reliability prediction models based on process and 
product measurements alone may not be sufficiently 
accurate [8, 15].   These predictions need 
corroboration.  If during the certification testing we 
assume a limited belief in the accuracy of early 
assessment models then the main drawback of input 
domain reliability assessment models, the 
impractically large number of statistical tests, 
disappears.  In other words, it is faster to confirm an 
existing belief (that the program is reliable enough) 
than to establish this belief by assuming nothing.  In 
this paper, we describe the statistical theory behind 
software reliability corroboration. We believe that 
this approach has the long term potential to make 
software certification of high assurance systems 
practical.  

 
The rest of the paper is organized as follows.  

Section 2 overviews traditional input domain based 
software reliability assessment models and their 
limitations. In Section 3, Bayesian hypothesis testing 
is presented.  Section 4 describes an application of 
the theory to a small control software. The priors 
used are borrowed from a study on software 
engineering measures and their relationship to 
reliability. Section 5 summarizes our findings and 
provides directions for future work.  

 
2. Input Domain Based Models: 

Background and Limitations 
 
An intuitive measure of software reliability is the 
proportion of test cases that result in correct outputs. 
If n represents the total number of test cases and nf 
the number of detected failures, the estimated 
reliability according to the Nelson model [16], is  
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the fraction nf/n in its limit represents the estimated 
probability of failure in a single run of the program.  
This leads to the reliability prediction based on the 
probability of correct execution in each run. Thus, the 
probability of correct execution over i runs is given 
by  
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A sound foundation for reliability assessment in the 
input domain is provided by statistical sampling 
theory [3].    A program under test separates the input 
domain into two disjoint classes: inputs that are 
correctly and those that are incorrectly mapped into 
the corresponding outputs.  Testing can be simulated 
by randomly drawing balls from an urn containing 
black balls (test cases in the input space I resulting in 
a failed execution) and white balls (correct 
executions).   Consequently, from the statistical 
viewpoint, each test case is a Bernoulli trial, and the 
model is frequently called the sampling model.  Since 
input domains are large, the likelihood of selecting 
the same test case i is small. Thus, reliability 
estimation assumes sampling with replacement in 
which nothing precludes repetition of a test case, but 
it is simpler (and cheaper) to implement.  Due to the 
use of statistical sampling, authors often introduce 
statistical terminology [3, 17]. For example, the set of 
points in the input space is called the population, 
while the number of executed test cases during 
program testing is called the sample size. 
 
Reliability assessment of software systems based on 
statistical sampling is performed in the certification 
phase of the software life-cycle. Faults are not 
removed when discovered. Rather, in the extreme 
case when ultra-high reliability is required, the 
program is rejected. Eventual assessment of the 
corrected program must be restarted from the 
beginning [13]. Often, it is unlikely that the program 
will fail during the certification testing, possibly due 
to the use of formal methods, fault prevention, and 
other techniques.  Research has been performed 
concerning the difficult problem of estimating the 
probability of failure when a program does not fail. 
Classic statistical work dating back to Laplace states 
that when t white balls and no black balls are drawn 
from the urn containing an unknown proportion of 
black and white balls, the probability of drawing a 
black ball next (representing the probability of failure 

in a single run of the program) is .
2

1
+t

 The above 

result is known as Laplace rule of succession [5]. It 
means that failure-free testing relates the estimated 
probability of failure to the number of test cases.  In 
order to establish the probability of failure at less 
than, say, 10-9 failures per hour, one needs to test the 
program for 109 hours (approximately 114,000 years) 
[4]. Limited improvement is achievable through the 
acceleration of testing.  The second possibility for 
improvement is making prior assumptions about the 
failure probability [6], as presented in later sections. 
The central question is how much testing should be 
conducted?  

 
3.  Bayesian Hypothesis Testing 
Let 0<θo<1 be a sufficiently small number close to 
zero that represents the required system reliability 
and let C represent the confidence level. Let us 
consider the null hypothesis Ho: θ≤θo and the 
alternative hypothesis H1: θ>θo. The null hypothesis 
states that the program's true reliability (which is 
unknown, i.e., being estimated) is higher than 
required, whereas H1 states the opposite, i.e., the 
system should not be released. In classical statistics a 
statistical hypothesis testing procedure is evaluated in 
terms of the Type I and Type II error probabilities. 
Type I error occurs when Ho is rejected when it is 
true and Type II error occurs when Ho is accepted 
when it is not true.  In Bayesian analysis the task of 
deciding between Ho and H1 is conceptually more 
appealing and, at the same time, more 
straightforward. We simply compute  
 

P(θ≤θo | Test data ), 
 
the so called posterior probability of the null 
hypothesis Ho. The conceptual advantage is that the 
posterior probability reflects the prior opinions (the 
opinions about θ  prior to certification testing of the 
program) and the results of the actual certification 
test. Let P(Ho ) and P(H1), where P(Ho)+P(H1)=1, 
denote the prior probabilities assigned to the null and 
the alternative hypothesis.  In practice, it may be 
difficult to obtain these probabilities, as discussed in 
the next section. Then,   

O( Ho )= P( Ho ) / P( H1 ) 
is called the prior odds of Ho to H1 and  
 
O (Ho | Test Data ) = 

P ( Ho | Test Data ) / P (H1 | Test Data ) 
 

is called the posterior odds ratio of Ho to H1.  The 
Bayes factor F(Ho, H1) is defined as the ratio of 



  

posterior odds to prior odds in favor of the null 
hypothesis,  
 

F(Ho, H1)= O(Ho | Test Data) / O( Ho) . 
 

If the Bayes factor F(Ho, H1) is greater than one then 
we have evidence in favor of the null hypothesis and 
if it is less than one we have evidence against the null 
hypothesis. If the Bayes factor is equal to one then 
we do not discriminate between the null and the 
alternative hypothesis. The posterior probability of 
Ho can be written in terms of the prior probability of 
Ho and the Bayes factor,  
 
P(Ho|Test Data)=  

P(Ho)F(Ho, H1) / [P(Ho)F(Ho, H1)+(1-P(Ho)] . 
 
During certification testing, program executions 
either result in a success or in a failure.  An important 
factor determining our ability to corroborate the null 
hypothesis is the number of failures in n tests of the 
program.  We are interested in finding the overall 
number of certification tests, given the number of 
failures observed in certification, such that  
 

P( Ho | Test Data )= C, 
 
where C represents the required confidence level.   
 
In Table 1, we give the number of required 
certification tests, assuming C=0.99, when no 
failures are encountered (column n0), one failure is 
encountered (column n1) and when two failures are 
encountered (column n2), for some selected values of 
θo and P(Ho).  
 
A note of caution is appropriate here.  This section 
presents a simple overview of the reasoning and 
justification behind the Bayesian hypothesis testing 
approach to determine the number of “software 
reliability corroboration tests”. In theory, the prior 
beliefs in the null hypothesis and its alternative need 
to be provided as probability distributions of software 
failures over intervals (θo, 1) and (0, θo), respectively.  
In Table 1, our assumption is that the distribution of 
θ under Ho and H1 is uniform.  This by no means 
represents model limitation, since the theory behind 
this framework allows for any distribution.   
 
Table 1. The number of tests required for 
reliability corroboration according to Bayesian 
hypothesis testing theory. 

θθθθ        οοοο    P(H  o) n  o n  1 n  2 
0.01 0.01 457 476 497 

0.001 0.01 2378 2671 2975

0.0001 0.01 6831 10648 14501

0.00001 0.01 9349 33176 63649

0.000001 0.01 9752 101273 282007

     
0.01 0.02 388 410 433

0.001 0.02 1766 2098 2438

0.0001 0.02 3954 7549 11315

0.00001 0.02 4736 23037 49499

0.000001 0.02 4838 70800 221022

     
0.01 0.1 228 258 289

0.001 0.1 636 1017 1402

0.0001 0.1 853 3157 6150

0.00001 0.1 886 9646 27281

0.000001 0.1 890 30067 123725

     
0.01 0.4 90 128 167

0.001 0.4 138 411 739

0.0001 0.4 146 1251 3260

0.00001 0.4 147 3889 14724

0.000001 0.4 147 12222 67468

     
0.01 0.6 50 87 126

0.001 0.6 63 269 552

0.0001 0.6 65 827 2458

0.00001 0.6 65 2584 11173

0.000001 0.6 65 8139 51351
 
A closer look at the values in Table 1 reveals the 
strongest possible motivation for the software 
reliability corroboration approach.  For θο=10-2 and 
P(H0)=0.4, for example, if after 90 tests there is no 
failure then we are 99% confident that θ≤10-2.  If 
after 128 tests there has been one failure observed 
then we are 99% confident that θ≤10-2. If after 167 
tests there are 2 failures then we are, again, 99% 
confident that θ≤10-2.   
 
4. Predicting Software Reliability Prior to 
Certification 

 



  

4.1. Priors Based on Software Engineering 
Measures   

 
To be able to apply the framework discussed in 
Section 3 acceptable priors need to be identified and 
or developed. A possible source of priors is the set of 
priors that can be developed from software 
engineering measures such as fault density, 
cyclomatic complexity, requirements traceability, etc.  
In a study carried out for the U.S. Nuclear Regulatory 
Commission, 40 software engineering measures were 
ranked with respect to their ability to predict 
reliability [11, 14] for different phases of the life-
cycle.  
 
An initial validation of this ranking was performed in 
a follow-up study [10]. The study involved the 
following software engineering measures: 
requirements traceability, function points, bugs per 
line of code (Gaffney estimate), fault density and test 
coverage.  To validate the ranking estimations of 
reliability were built based on these measurements. 
The validation study was limited to the testing phase 
and the estimates were used to predict reliability in 
operation.  The application studied was a small 
control software, PACS. PACS is a simplified 
version of an automated personnel entry access 
system (gate) used to provide privileged physical 
access to rooms/buildings [1].  
 
 Figure 1. Reliability Prediction System (RPS).  

 
The estimates were built using the concept of 
Reliability Prediction System (RPS). A RPS is a 
complete set of measures by which reliability can be 
predicted. The RPS is composed of a root measure 
and several support measures as shown in Figure 1. 
In Table 2 we provide the RPS for the measure “Test 
Coverage” as well as the model used to transform the 
measurements (the root and support measures) into  a 
reliability prediction.   Table 3 gives predictions for θ 
derived from the 5 measures considered in the 
validation study. 

 
Table 2. RPS for “Test Coverage” 
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RPS Notation 

Root measure: test 
covera
ge 

Support measure:  
• Implement

ed LOC (LOCI) 
• Tested 

LOC (LOCT) 
• The 

number of defects 
found by test (N0) 

• Missing 
function point (FPM) 

• Backfiring 
coefficient (k) 

• Defects 
found by test (DT) 

• Linear 
execution time (TL) 

• Execution 
time per demand (τ) 

• Fault 
exposure ratio (K) 

C0 defect coverage 
C1 test coverage (statement 

coverage) 
a0,a1,a2 coefficients 
N0 the number of defects 

found by test 
N the number of defects 

remaining 
K fault exposure ratio 
TL linear execution time 
τ the average execution 

time per demand 

 
Table 3. Predicted θθθθ Values 

Measure θ 
Defect density 0.078 
Test coverage 0.092 
Requirements traceability 0.078 
Function point 0.0020 
Bugs per line of code (Gaffney estimate) 0.000028 
 
4.2. From Priors to P(H0) 
 
The next step is to derive a value for P(H0) from the 
prior estimates given in Table 3.  Let us assume for 
the purpose of this paper that 20 is equal to 9x10-2. 
Each of the probability estimates in Table 3 is the 
solution of a model based on a different RPS. This 
model, say the ith model Mi is a function of given 
measurements m(Mi) and parameters N(Mi). Consider 
for instance the model built for “Test Coverage”. 
This model is a function of the measures 
m(Mi)={Implemented LOC, Tested LOC,  Missing 
Function Point, Backfiring Coefficient, Defects 
Found by Test, Linear Execution Time, Execution 
Time Per Demand, Fault Exposure Ratio} and the 
parameters N(Mi)={a0, a1, a2}.  
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The estimate of interest is U(20-2) (i.e. whether or 
not the null hypothesis is satisfied) where U stands 
for the step function: U(x-x0) = 1 for x ≥ x0 and 0 
otherwise.    
 
The expected value of the unknown U(20-2), E(U(20-
2)) is thus given by: 
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where  
 
θ(Mi, m(Mi), φ(Mi)) is the probability of failure 
estimate, solution of model Mi given measurements 
m(Mi) and model parameters φ(Mi) and p(Mi) is the 
probability that model Mi is correct. The concept of a 
correct model is not a new concept. Indeed it is 
borrowed from the model uncertainty literature. For 
more details on this topic the reader is referred to [2, 
12].  
 
In this paper the possible contributions of parameters’ 
and measurements’ uncertainty are neglected. Future 
research will investigate their impact in detail.    
 
On the other hand, estimates of p(Mi) can be obtained 
readily from the expert opinion elicitation process 
performed in the NRC study. Indeed, one of the 
criteria considered during the process is the 
“Relevance To Reliability” criterion. This criterion 
assesses the perceived “distance” between a root 
measure and reliability and is thus an indicator of the 
correctness of the model derived from this measure. 
The value of the criterion “Relevance to Reliability” 
is given in Table 4 for the five measures under 
consideration. The value p(Mi) is obtained by simple 
normalization over the spectrum of available models. 
From the values of p(Mi) in Table 4, the values of 2 
in Table 3 and the equation used to calculate E(U(20-
2)), we obtain p(H0)= 0.61. 
 
A simple reference to Table 5 shows that for 20 = 
9x10-2 the number of test cases has been reduced 
from > 72 to 20 when no failures are observed during 
testing.   
 
Table 4. The value of Relevance to Reliability 

Measure Relevance to 
Reliability 

Code defect density 0.85 
Test coverage 0.83 
Requirements traceability 0.45 
Function point analysis 0.00 

Bugs per line of code (Gaffney estimate) 0.00 

 
Table 5. The number of tests required for 22220 = 
9x10-2, C=0.99 

θθθθ        οοοο    P(H  o) n  o 
0.09 0.01 72 

0.09 0.1 47 

0.09 0.2 39 

0.09 0.5 25 

0.09 0.61 20 
 

6.  Summary 
 

We presented two different statistical frameworks 
for quantification of software reliability based on 
input domain modeling.  The quantification of 
reliability is obtained either through the sampling 
model and Bayesian hypothesis testing. The Bayesian 
framework allows the inclusion of “qualitative” 
verification and validation activities performed 
during system’s development in terms of prior failure 
probabilities.  These approaches are suitable for our 
"reliability corroboration" paradigm.  To the best of 
our knowledge this is the first occasion that Bayesian 
hypothesis testing is proposed for the modeling of 
software reliability.   

 
The significance of the Bayesian hypothesis testing 

framework for software reliability corroboration is in 
the reasonable number of tests that it prescribes for 
software certification.  This is especially obvious in 
the case of high assurance systems, which for all 
practical purposes, are considered impossible to 
certify by today's standards.  While this methodology 
per se does not make systems more reliable than they 
already are, it provides a framework for 
quantification of otherwise qualitative software 
certification processes.    

 
It comes as no surprise that programs developed in 

stable and mature development environments, which 
support measurement and process improvement 
feedback throughout the lifecycle, will require a 
fewer number of tests for certification.  Ultimately, 
only such environments should be used for high 
assurance system development.  But, as Table 1 
indicates, a failure encountered in certification testing 
imposes a steep economic penalty, because tens of 
thousands of additional tests may become required.   

 
Regardless of its elegance, the Bayesian hypothesis 

testing framework for software reliability 
corroboration may make the practice of software 



  

certification risky if applied inappropriately.  The 
basic current problem is the immaturity of methods 
for evaluating the precision and trust assigned to pre-
certification software reliability beliefs.  We have 
presented an approach to the estimation of prior 
beliefs based on the RPS theory. This work needs to 
be pursued. Indeed, the theory should be extended to 
other software engineering measures, other life-cycle 
phases. Finally, we need to consider the impact of 
uncertainties in the measurements and the parameters 
of the models.   
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